105 research outputs found

    Computational Intelligence Modeling of Pharmaceutical Properties

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.In the pharmaceutical industry, a good understanding of the casual relationship between product quality and attributes of formulations is very useful in developing new products, and optimizing manufacturing processes. Feature selection is mandatory due to the abundance of noisy, irrelevant, or misleading features. The selected features will improve the performance of the prediction model and will provide a faster and more cost effective prediction than using all the features. With the big data captured in the pharmaceutical product development practice, computational intelligence (CI) models and machine learning algorithms could potentially be used to identify the process parameters of formulations and manufacturing processes. That needs a deep investigation of roller compaction process parameters of pharmaceutical formulations that affect the ribbons production. In this work, we are using the bio-inspired optimization algorithms for feature selection such as (grey wolf, Bat, flower pollination, social spider, antlion, moth-flame, genetic algorithms, and particle swarm) to predict the different pharmaceutical properties.European Cooperation in Science and Technology. COSTThis work was supported by the IPROCOM Marie Curie initial training network, funded through the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement No. 316555. In addition, this work was partially supported by NESUS

    COVID-19 Prediction Using LSTM Algorithm: GCC case study

    Get PDF
    Coronavirus-19 (COVID-19) is the black swan of 2020. Still, the human response to restrain the virus is also creating massive ripples through different systems, such as health, economy, education, and tourism. This paper focuses on research and applying Artificial Intelligence (AI) algorithms to predict COVID-19 propagation using the available time-series data and study the effect of the quality of life, the number of tests performed, and the awareness of citizens on the virus in the Gulf Cooperation Council (GCC) countries at the Gulf area. So we focused on cases in the Kingdom of Saudi Arabia (KSA), United Arab of Emirates (UAE), Kuwait, Bahrain, Oman, and Qatar. For this aim, we accessed the time-series real-datasets collected from Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). The timeline of our data is from January 22, 2020 to January 25, 2021. We have implemented the proposed model based on Long Short-Term Memory (LSTM) with ten hidden units (neurons) to predict COVID-19 confirmed and death cases. From the experimental results, we confirmed that KSA and Qatar would take the most extended period to recover from the COVID-19 virus, and the situation will be controllable in the second half of March 2021 in UAE, Kuwait, Oman, and Bahrain. Also, we calculated the root mean square error (RMSE) between the actual and predicted values of each country for confirmed and death cases, and we found that the best values for both confirmed and death cases are 320.79 and 1.84, respectively, and both are related to Bahrain. While the worst values are 1768.35 and 21.78, respectively, and both are related to KSA. On the other hand, we also calculated the mean absolute relative errors (MARE) between the actual and predicted values of each country for confirmed and death cases, and we found that the best values for both confirmed and deaths cases are 37.76 and 0.30, and these are related to Kuwait and Qatar respectively. While the worst values are 71.45 and 1.33, respectively, and both are related to KSA

    Improvement of active distribution systems with high penetration capacities of shunt reactive compensators and distributed generators using Bald Eagle Search

    Get PDF
    This work proposes an intelligent allocation of distributed generation (DG) units and shunt reactive compensators (SRC) with high penetration capacities into distribution systems for power loss mitigation using the Bald Eagle Search (BES) optimization algorithm. The intelligent allocation causes a reduction in voltage variations and enhances the voltage stability of the systems. The SRC units include shunt capacitors (SC), Static Var Compensators (SVC), and Distribution Static Compensators (DSTATCOM), which are determined according to their capacities. The optimization study includes the 33-bus and the 118-bus distribution systems as medium to large systems. Performance parameters, including the reactive power loss, Total Voltage Deviation (TVD), and Stability Index (SI), besides the power loss, are recorded for each optimization case study. When the BES algorithm optimizes 1, 2, and 3 DG units operating at optimal power factor (OPF) into the 33-bus systems, percentage reductions of power loss reach 67.84%, 86.49%, and 94.44%, respectively. Reductions of 28.26%, 34.47%, 35.24%, and 35.44% are achieved in power loss while optimizing 1, 3, 5, and 7 SRC units. With a combination of DG/SRC units, the power loss reductions achieve 72.30%, 93.89%, and 97.49%, optimizing 1, 3, and 5 pairs of them. Similar reductions are achieved for the rest of the performance parameters. With high penetration of compensators into the 118-bus system, the percentage reductions of power loss are 29.14%, 73.27%, 83.72%, 90.14%, and 93.41% for optimal allocations of 1, 3, 5, 7, and 9 DG units operating at OPF. The reduction reaches 11.15%, 39.08% with 1 and 21 devices when optimizing the SRC. When DG SRC units are optimized together, power loss turns out to be 32.83%, 73.31%, 83.32%, 88.52%, and 91.29% with 1, 3, 5, 7, and 9 pairs of them. The approach leads to an enhanced voltage profile near an acceptable range of bus voltages, reduces the voltage fluctuation substantially, and enhances the system stability. The study also ensures the BES algorithm’s capability to solve these nonlinear optimization problems with high decision-variable numbers

    Optimal Allocation of Distributed Generation with the Presence of Photovoltaic and Battery Energy Storage System Using Improved Barnacles Mating Optimizer

    Get PDF
    This paper proposes an improved version of Barnacles mating optimizer (BMO) for solving the optimal allocation problem of distribution generator (DGs) in radial distribution systems (RDSs). BMO is a recent bioinspired optimization algorithm that mimics the intelligence behavior of Barnacles\u27 mating. However, like with any metaheuristic optimization approach, it may face issues such as local optima trapping and low convergence rate. Hence, an improved BMO is adopted based on the quasi oppositional (QOBMO) and the chaos maps theories (CQOBMO). The two improvement methods are applied to increase the convergence performance of the conventional BMO. To prove the efficiency of the improved QOBMO and CQOBMO algorithms, 23 benchmark functions are used, and the accomplished results are compared with the conventional BMO. Then, the improved algorithm is applied to minimize the total power and energy losses in the distribution systems considering the uncertainty of DG power generation and time‐varying load demand. The uncertainty of DG is represented using photovoltaic‐based DG (PVDG). The improved method is employed to find the optimal power scheduling of PVDG and battery energy storage (BES) during 24 h. Two standard IEEE RDS (IEEE 33‐bus and IEEE 69‐bus) are used to simulate the case studies. Finally, the obtained results show that significant loss reductions (LRs) are achieved using the improved BMO where LRs reach 65.26%, and 68.86% in IEEE 33‐bus and 69‐bus, respectively, in the case of PVDG integration. However, using PVDG and BES the energy loss reductions reach 64% and 67.80% in IEEE 33‐bus and 69‐bus, respectively, which prove the efficiency of the improved BMO algorithm in finding the optimal solutions obtained so far

    Robust Parameters Tuning of Different Power System Stabilizers Using a Quantum Artificial Gorilla Troops Optimizer

    Get PDF
    Electrical power system abnormalities may have several negative consequences on its stable operation. As a result, preserving its stability under such operational states has become an ongoing challenge for power engineers. PSSs are created as auxiliary controllers to address the instability issues produced upon disturbances. They dampen the oscillations induced by the disturbances by giving the system the necessary damping torque. This research aims at presenting a comprehensive study for the optimum tuning of power system stabilizer (PSS) of different structures. This aim is accomplished with the help of a novel modified optimization algorithm called Quantum Artificial Gorilla Troops Optimizer. The modified optimizer\u27s validation is first investigated with the well-known benchmark optimization functions and shows superiority over Gorilla Troops Optimizer and competitive algorithms. The research is extended to the application of the optimum tuning of various PSS structures of the single machine to the infinite bus model. The proposed optimization algorithm shows fast convergence over investigated optimization algorithms. Moreover, the Tilt-integral-derivative based PSS shows better performance characteristics in terms of lower settling time and lower maximum and undershoot values over the conventional lead-lag PSS, dual input PSS, and fractional-order proportional-integral-derivative based PSS

    Home energy management system considering effective demand response strategies and uncertainties

    Get PDF
    Nowadays, load serving entities require more active participation from consumers. In this context, demand response programs and home energy management systems play a crucial role in achieving multiple goals such as peak clipping. However, the adoption of demand response initiatives typically has a negative impact on the monetary expenditures of the users. This way, a demand response program should be as effective as possible to make the different goals more easily achievable without compromising the financial requirements of the users. This paper develops a home energy management system that incorporates three novel effective demand response strategies. The effectiveness of the adopted demand response strategies is checked through extensive simulations in a benchmark prosumer environment. To this end, a novel scenario-based approach is developed in order to manage uncertainties. The introduced strategies are compared with other well-known demand response mechanisms. To that end, a novel comparative index, which serves to evaluate the compromise between demand response achievements and energy bills, is introduced. Results obtained demonstrate that the developed strategies are more effective than other approaches. In fact, through the use of the proposed mechanisms, different indicators can be improved until ∼70%, while the electricity bill is only scarcely increased (∼0.11€). Other relevant aspects like the influence of the storage capacity and computational performance of the introduced optimization framework are also analysed

    Performance Evaluation of Ingenious Crow Search Optimization Algorithm for Protein Structure Prediction

    Get PDF
    Protein structure prediction is one of the important aspects while dealing with critical diseases. An early prediction of protein folding helps in clinical diagnosis. In recent years, applications of metaheuristic algorithms have been substantially increased due to the fact that this problem is computationally complex and time-consuming. Metaheuristics are proven to be an adequate tool for dealing with complex problems with higher computational efficiency than conventional tools. The work presented in this paper is the development and testing of the Ingenious Crow Search Algorithm (ICSA). First, the algorithm is tested on standard mathematical functions with known properties. Then, the application of newly developed ICSA is explored on protein structure prediction. The efficacy of this algorithm is tested on a bench of artificial proteins and real proteins of medium length. The comparative analysis of the optimization performance is carried out with some of the leading variants of the crow search algorithm (CSA). The statistical comparison of the results shows the supremacy of the ICSA for almost all protein sequences

    Effect of cryogenic treatment on drill tool for enhancing metal cutting operation of aluminium alloy IS737.Gr19000

    Get PDF
    Drilling is the hole making process on the component face with the aid of a twisted drillbit. Normal drill bits easily wear out through penetration of drill bit into the workpiece material due to force generated in the drilling operation. So this work tries to investigate the machining parameters with cryogenically treated drill bits on various responses. Cryogenic treatment is one of the thermal engineering processes, which is used to cool the material from the temperature of −150 °C to −273 °C. This research work utilizes cryogenically treated drill tools for investigating the drilling performance on aluminium alloy (IS737.Gr19000) workpiece material. The independent variables and dependent variables are studied in this experimental analysis are spindle speed, feed rate and machining time, entry and exit burr dimensions, thrust force, torque, Ovality, surface roughness, respectively. The theoretical investigation is also carried out with statistical analysis. The response surface methodology with Box Behnken design the 17 experimental runs with 9 different treated drill tools are carried out. The cryogenically treated drill bit gave good results on burr dimensions, Ovality, surface roughness on drilled hole quality. The tool wear performance was also studied with drill tool geometry measurements with the tool makers microscope. The cryogenically treated drill bits gave the best results than the normal drill bit
    corecore